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Abstract. The relativistic energies, the oscillator strength, and the lifetimes of high-lying core-excited
states 1s2s2pnp 5P (n = 2–5) and 1s2p2mp 5So (m = 2–5) of Li− ion are calculated with the saddle-point
variational method and restricted variation method. The fine structure and the hyperfine structure of the
core-excited states for this system are also explored. The results are compared with other theoretical and
experimental data in the literature.

PACS. 31.30.Jv Relativistic and quantum electrodynamic effects in atoms and molecules – 32.10.Fn Fine
and hyperfine structure – 32.70.Cs Oscillator strengths, lifetimes, transition moments

1 Introduction

Recently, the core-excited states of beryllium-like ions, a
complex four-electron atomic system, have been of inter-
est to both theorists [1,8–15] and experimentalists [2–7].
The studies of the core-excited states of beryllium-like ions
are very useful in astrophysics and plasma physics. The
structures of the core-excited states of Li− ions provide
important information on the dynamics of many-electron
interactions, as the weakly bounded electrons are easily
perturbed.

Bunge [1,2] first revealed the existence of two core-
excited bound states of Li− and identified the 3490 Å line
as the 1s2s2p2 5P – 1s2p3 5S transition in Li−. The re-
sults of Bunge were in good agreement with the exper-
iment of Berry et al. [3] and were readily confirmed ex-
perimentally [5–7]. Brooks and his group [6] identified the
transition 1s2s2p2 5P – 1s2p3 5So for Be-like isoelectronic
series from Li− to FVI. In 1983, Beck and Nicolaides [8]
reported the lifetime and the hyperfine structure of the
doubly excited states of 1s2s2p2 5P and 1s2p3 5S for Li−
ion in a many-body point of view, they proposed the ad-
ditional decay channel of radiative autoionization simi-
lar to Li [9] and obtained a theoretical lifetime 2.7 ns of
5So state. The fine structure and the hyperfine structure
are sensitive to the correlation effects between electrons
and the relativistic corrections. The hyperfine structure
is caused by the interaction between the electrons and
the electromagnetic multipole moments of the nucleus.
The Li− ion is known to support a sharp E1 transition
line between the 1s2s2p2 5P1,2,3 and the 1s2p3 5So states
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at 3489.7 Å from Bunge [1]. Cheng et al. [10] reported
the fine and the hyperfine structure of the doubly excited
quintet states of the 7Li− spectrum using multiconfigu-
ration Dirac-Fock method (MCDF). More recently, Yang
and Chung [11] reported the results of energy, fine struc-
ture, and hyperfine structure of the lowest core-excited
states of 1s2s2p2 5P and 1s2p3 5So of the Be-like isoelec-
tronic sequence (Z = 3–10) using multiconfiguration inter-
action method. So far, to our knowledge, no calculations
have been reported for the high-n core-excited states of
the Li− ion. The theoretical calculations on the structure
of high-n core-excited states for the four-electron negative
ions are complicated. The negative ion is very unstable
and the weakly bound electrons are easily perturbed. The
inner three electrons exert an efficient screening upon the
nucleus. With the increase of the parameter n, the screen-
ing grows more and more obvious, and the calculations
are challengeable. On the other hand, the identification
of the transition line among high-n core-excited quintet
states is very difficult, due to the restriction of resolution
from experiments.

In this paper, the saddle-point variational method is
used on the high-lying core-excited states 1s2s2pnp 5P
(n = 2–5) and 1s2p2mp 5So (m = 2–5) for Li−. The non-
relativistic energies, the fine structure, the hyperfine pa-
rameters and the coupling constants are reported. Rela-
tivistic effects are computed with first-order perturbation
theory. The oscillator strengths, lifetimes and wavelength
are also reported to compare with experimental and the-
oretical data. These available data should be very useful
in the better understanding of the experimental spectra
in the future.
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2 Theory

In LS coupling, the non-relativistic Hamiltonian for the
Be-like system is given by

Ĥ0 =
4∑

i=1

[
−1

2
∇2

i −
4
ri

]
+

4∑

i,j=1
i<j

1
rij
. (1)

The saddle-point wave function ψb of the core-excited
four-electron system can be written as

ψb(1, 2, 3, 4) =

A
∑

i

Ci

[
1−P (ri)

]
φn(i),l(i) (R)YLM

l(i) (Ω)χ
SMS

(2)

where A is the antisymmetrization operator and the radial
basis function is Slater orbital

φn(i),l(i)(R) =
4∏

j=1

r
nj

j exp(−αjrj). (3)

In equation (2), the projection operator is given by

P (ri) = |φ0(ri)〉〈φ0(ri)|. (4)

Here the vacancy orbital is

φ0(r) = N exp(−qr) (5)

where q is a parameter determined in the energy maxi-
mization processes; the linear parameters Ci and the non-
linear parameters αj in equation (3) are determined in the
energy optimization processes.

A different set of αj is used for each l(i). The angular
and spin wave function can be represented as

l (i) = [(l1, l2) l12, l3] l123, l4 (6)
χ

SSz
= [(s1, s2) s12, s3] s123, s4. (7)

We use restricted variational method to further improve
energy Eb. The basic wave function ψb is used as a sin-
gle term in the improved wave function [12], that is ex-
pressed as

Φ (1, 2, 3, 4) = D0ψb (1, 2, 3, 4) + ψ2 (1, 2, 3, 4) (8)

where

ψ2 (1, 2, 3, 4) = A

I∑

i=1

DiΦn(i)l(i) (1, 2, 3, 4) . (9)

To saturate the functional space, ψ2 takes the same form
as ψb(1, 2, 3, 4), but the nonlinear parameters are much
different from those of ψb(1, 2, 3, 4). Each of the nonlinear
parameters in the basis function of ψ2 is optimized in the
restricted variational calculation and the energy improve-
ment ∆ERV can be obtained. Then the nonrelativistic
energy is given by Eb +∆ERV .

In addition to the ∆ERV , the energy is further cor-
rected by the mass polarization effect and relativistic cor-
rections. The relativistic perturbation operators consid-
ered in this work are: correction to the kinetic energy (P4),
the Darwin term, the electron-electron contact term, and
the orbit-orbit interaction. The mass polarization pertur-
bation operator is accurate to all orders. The relativistic
corrections are calculated using the first-order perturba-
tion theory [13]. The explicit expressions of these opera-
tors are given in [13] and they will not be repeated here.

The fine-structure perturbation operators [14] are
given by

HFS = HSO +HSOO +HSS (10)

where the spin-orbit, the spin-other-orbit and the spin-
spin operators, respectively, are

HSO =
Zα2

2

4∑

i=1

li · si

r3i
(11)

HSOO = −α
2

2

4∑

i,j=1
i�=j

[
1
r3ij
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]
· (si + 2sj)

(12)

HSS = α2
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i,j=1
i≺j

1
r3ij

[
si · sj − 3(si · rij)(sj · rij)

r2
ij

]
.

(13)

The li and si stand for the orbital and the spin angular
momentum of the ith electron and α is the fine structure
constant. The wave function used to calculate these per-
turbations in the LSJ representation is

ΨLSJJZ =
∑

M,SZ

〈LSMMS |JMJ 〉ψb(1, 2, 3, 4). (14)

The fine-structure energy levels are calculated by the first-
order perturbation theory

(∆EFS)J = 〈ΨLSJJZ |HSO+HSOO+HSS |ΨLSJJZ 〉 . (15)

The hyperfine structure of atomic energy levels is caused
by the interaction between the electrons and the electro-
magnetic multipole moments of the nucleus. The leading
terms of this interaction are the magnetic dipole and elec-
tric quadrupole momentum. For an N -electron system,
the hyperfine-interaction Hamiltonian can be represented
as follows [16,17]:

Hhfs =
∑

k=1

T (k)M (k) (16)

where T (k) and M (k) are spherical tensor operators of
rank k in the electronic and nuclear space, respectively.
The k = 1 term represents the magnetic-dipole interac-
tion between the magnetic field generated by electrons
and the nuclear magnetic dipole moments; the k = 2 term
represents the electric quadrupole interaction between the
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States Eb ∆ERV Enonrel ∆Erel Etotal

1s2s2p2 5Pe(1) –5.3865140 –0.0000897 –5.3866037 –0.0006007 –5.3872044
–5.3865019a –5.3871726a

–5.386533b

1s2s2p3p 5Pe(2) –5.3678751 –0.0000063 –5.3678814 –0.0006102 –5.3684916
1s2s2p4p 5Pe(3) –5.3675156 –0.0000064 –5.3675220 –0.0006097 –5.3681317

1s2s2p5p 5Pe(4) –5.3668659 –0.0000079 –5.3668738 –0.0006113 –5.3674851
1s2p3 5So(1) –5.2560736 –0.0000337 –5.2561073 –0.0005564 –5.256637

–5.2560529 –5.2566541a

–5.256047b

1s2p23p 5So(2) –5.2453331 –0.0000152 –5.2453483 –0.0005620 –5.2459103
1s2p24p 5So(3) –5.2403270 –0.0000511 –5.2403781 –0.0005654 –5.2409435

1s2p25p 5So(4) –5.2390759 –0.0001056 –5.2391815 –0.0005668 –5.2397483
aReference [11], breference [2].

Table 1. Energies (a.u.) of
1s2s2pnp 5P (n = 2–5) and
1s2p2mp 5S (m = 2–5) for Li−

ion. Eb stands for the upper
bound; ∆ERV is the restricted
variation correction; ∆Erel is the
relativistic correction and mass
polarization.

electric field gradient from electrons and the non-spherical
charge distribution of the nucleus. The higher-order con-
tribution terms are much smaller and can often be ne-
glected.

In the non-relativistic framework, the electronic tensor
operators in atomic units can be written as:

T (1) =
α2

2

4∑

i=1

[
2glr

−3
i l
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10gs
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3
gss
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]
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and

T (2) = −
4∑

i=1

r−3
i C

(2)
i (18)

where gl = (1 −me/M) and gs = 2.0023193 are the elec-
tron orbital and electron spin g factors, respectively. M is
the nuclear mass. The tensor C(2)

i is connected with the
spherical harmonics Ylm(i) by C(l)

m =
√

4π/(2l+ 1)Ylm.
The hyperfine interaction couples the electronic angu-

lar momenta J and the nuclear angular momenta I to a
total angular momentum F = I + J . The uncoupling and
coupling hyperfine constants are defined in a.u. as [16,17]:

aC = 〈γLSMLMS|
N∑

i=1

8πδ3 (ri) s0 (i) |γLSMLMS〉
(Fermi contact) (19)
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2C(2)
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(spin-dipolar) (20)
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(orbital) (21)

bq = 〈γLSMLMS |
N∑

i=1

2C(2)
0 (i) r−3

i |γLSMLMS〉
(electric quadrupole) (22)

and

AJ =
µI

I

1
[J(J + 1)(2J + 1)]1/2

〈γJ ||T (1)||γJ〉 (23)

BJ = 2Q
[

2J(2J − 1)
(2J + 1)(2J + 2)(2J + 3)

]1/2

〈γJ ||T (2)||γJ〉
(24)

where µI is the nuclear magnetic moment. Q is the nuclear
electric quadrupole moment.

3 Result and discussion

In this work, two high-n series of Li− ion, 1s2s2pnp 5P and
1s2p2mp 5So states, with n, m = 2–5, are studied. The
energies, the fine structure, and the hyperfine structure
for these high-n systems are calculated using the saddle-
point variational method and restricted variation method
with accurate multiconfiguration-interaction wave func-
tions constructed from Slater basis sets. The core-excited
states of the Li− ion are a complex four-electron atomic
system. The correlation effects among electrons are com-
plicated. Many relevant angular and spin couplings are
important for the energy. In order to get a high-quality
wave function, the number of angular-spin components in
the wave functions ranges from 7 to 50, and the number of
linear parameters ranges from 541 to 1298. In this work,
for the 1s2s2pnp 5P (n = 2–5) state, even parity, the im-
portant angular series [l1, l2, l3, l4] is [00l, l], [01l, (l+1)],
[11l, l], [02(l+ 1), (l+ 1)] [11l, (l+ 2)], [02(l+ 1), (l+ 3)]
etc. For the 1s2p2mp 5So (m = 2–5) state, odd parity,
the available angular series [l1, l2, l3, l4] is [01l, l], [11l,
(l + 1)], [02(l + 1), (l + 2)], [12(l + 1), (l + 1)], [12(l+ 1),
(l + 3)] [22(l+ 1), (l + 2)]. In both cases, the value of l is
from 1 to 9, as the energy contribution from the set with
l > 9 is small and negligible. For each set of orbital angu-
lar momenta l1, l2, l3 and l4, there could be several ways
to couple this set into the desired total orbital angular
momentum. In order to improve the energy Eb obtained
from ψb, the restricted variational method is used to com-
pute energy contributions from each chosen angular-spin
series.
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Table 2. Wavelength λ (nm), oscillator strength (fl, fv, fa), and lifetime τ (ns) of the core-excited quintet states for Li−.

Transitions fl fv fa τ λ

1s2s2p2 5Pe → 1s2p3 5So 0.2104 0.2095 0.2236 2.89 349.06
0.2095a 0.2093a 0.2277a 2.91a 349.12a

2.7e 349.0e

2.3 ± 0.1b 349.0b

2.86 ± 0.1c 348.98c

2.9 ± 0.2d 349.07d

1s2s2p3p 5Pe → 1s2p23p 5So 0.0550 0.0551 0.0505 12.56 371.72

1s2s2p4p 5Pe → 1s2p24p 5So 0.0582 0.0508 0.1465 11.02 358.26

1s2s2p5p 5Pe → 1s2p25p 5So 0.0632 0.0511 0.4193 10.05 356.72
aReference [11], breference [5], creference [2], dreference [3], ereference [8].

Table 3. Fine structure splittings (in cm−1) of the 1s2s2pnp 5P (n = 2–5) states for Li−.

States 1s2s2p2 5Pe 1s2s2p3p 5Pe 1s2s2p4p 5Pe 1s2s2p5p 5Pe

This work Ref. [11]

υ2−1 0.92 0.91 0.58 0.86 0.83

υ3−2 –1.32 –1.32 –0.64 –0.81 –0.84

Table 4. Hyperfine parameters of 1s2s2pnp 5P (n = 2–4) and 1s2p2mp 5S (m = 2–4) states for Li− (in a.u).

Resonances sources ac al aSD bq

1s2s2p2 5Pe(1) This work 111.1411 0.183978 0.03751 0.07502
Others 37.059a 0.1850a 0.03833a

1s2s2p3p 5Pe(2) This work 112.2780 0.155001 0.03173 0.06345
1s2s2p4p 5Pe(3) This work 112.2656 0.155150 0.03168 0.06335

1s2p3 5So(1) This work 106.0132
Others 35.366a

1s2p23p 5So(2) This work 105.9522
1s2p24p 5So(3) This work 105.9558

aReference [8].

In Table 1, the energies of 1s2s2pnp 5P (n = 2–5)
and 1s2p2mp 5So (m = 2–5) states for Li− ion are given,
including the restricted energies and the relativistic ener-
gies. The high-n core-excited states are close to the ion-
ization threshold of Li−, and it is difficult to carry out
high-quality theoretical calculations due to the numeri-
cal instability. The correlation effects between electrons in
this system are very complicated. In order to get the high-
quality wave function, all important angular-spin compo-
nents have been included in the wave functions. Yang and
Chung [11] first reported the lowest core-excited states
1s2s2p2 5P and 1s2p3 5S of Li−. The results of the energies
of 1s2s2p2 5P and 1s2p3 5S states in this work are lower
than their theoretical data [11] about 32 and 10 µa.u., and
the difference with Bunge [2] is 671 and 617 µa.u., respec-
tively. To our knowledge, no calculations of these higher-n
core-excited states have been reported. Our results should
be useful in future experiments.

Table 2 gives the results of oscillator strengths from
the dipole length (fl), the dipole velocity (fv), the dipole
acceleration (fa), the radiative lifetimes, and the transi-
tion wavelengths. For the low-n states, the three formulae
(fl, fv, fa) agree well; for the high-n core-excited states,
because these oscillator strength are calculated with ψb

only, and the open-channel part of the wave function is
not included, the three results agree reasonably well. The
oscillator strength and the transition wavelength for Li−
in this work are in good agreement with existed data. In
Table 2, the lifetime for Li− 1s2p3 5S state agrees well
with those of Yang [11], Bunge [2], and Berry [3]. How-
ever, there is a discrepancy between the theoretical data
and experimental result of Mannervik [5]. The result for
the 5So lifetime from Nicolaides [8], which includes the
contribution of radiative autoionization, agrees with the
experiment [5] better. The radiative autoionization might
play an important role in this process. To our knowledge,
no data of high-n states of this system have been reported.

In this work, the fine structure splittings are calculated
with the HSO, HSOO and HSS perturbation operators by
using the first-order perturbation theory on the 1s2s2pnp
5P (n = 2–5) states. The results are presented in Table 3.
Our calculation results of the fine structure corrections are
in agreement with those of Yang and Chung [11].

The hyperfine structure is caused by the interaction
between the electrons and the electromagnetic multipole
moments of the nucleus, sensitive to the correlation effects
between electrons and the relativistic corrections. Tables 4
and 5 give the hyperfine parameters and the hyperfine
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Table 5. Hyperfine coupling constants (in GHz) of 1s2s2pnp 5P (n = 2–4) and 1s2p2mp 5S (m = 2–4) states for Li−.

Resonances AJ BJ

J = 3 J = 2 J = 1 J = 3 J = 2 J = 1

1s2s2p2 5Pe(1) 2.57614 3.19898 5.74867 6.52168(–4) –6.52168(–4) 6.52168(–5)

2.576a 3.200 5.751a

2.577b 3.200b 5.751b

1s2s2p3p 5Pe(2) 2.59993 3.23202 5.80972 5.51649(–4) –5.51649(–4) 5.51649(–5)
1s2s2p4p 5Pe(3) 2.59965 3.23168 5.80905 5.50760(–4) –5.50760(–4) 5.50760(–5)

1s2p3 5So(1) 3.66403
3.674a

3.667b

1s2p23p 5So(2) 3.66192

1s2p24p 5So(3) 3.66205
aReference [10], breference [8].

coupling constants for 1s2s2pnp 5P (n = 2–4) and
1s2p2mp 5So (m = 2–4) states in Li−. In this calculation,
high precise wave functions are used. We studied the hy-
perfine structure parameters: Fermi contact ac, the spin-
dipolar aSD, the orbital al, and the electric quadrupole
bq. In this work, Q = 0.0370, µI = 3.256427 and I = 3/2
are taken from reference [19]. The hyperfine structures of
1s2p3 5So and 1s2s2p2 5P states of Li− ion are explored
by Beck in 1983 [8]. Our results agree well with the data
of Beck [8] and Yang [8].

4 Conclusion

In this work, the energies, the fine structure and the os-
cillator strengths of 1s2s2pnp 5P (n = 2–4) and 1s2p2mp
5So (m = 2–4) states of Li− ion are calculated. The ener-
gies obtained in this work are much lower than the others
previously published, the wavelengths and radiative life-
times are in agreement with the published data. The hy-
perfine parameters and the hyperfine coupling constants
are reported. The hyperfine interaction effect cannot be
neglected for the low-n core-excited states. These results
should be very useful for experiments in the future.
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